
GeyserLink

GeyserLink Developers

Copyright (C) 2020 GeyserLink Developers

4

5

6

6

7

8

8

9

10

12

12

13

13

Table of contents

Introduction

• What is GeyserLink

• Features

QuickStart

• Maven Dependency

• Download the Plugin

• Sending a PingMessage

How it works

• Minecraft Plugin Messages

• Creating a Raw Message

• Creating a Raw Response

• Private and Public Keys

Custom Messages

• Custom Message and Response

• PlayerQueryMessage

• PlayerQueryResponse

• Putting it together

14

15

16

16

16

16

16

17

17

• Message Event

• Security

Contributing

• Contributing

• New ideas or Bug Reports

• Contributing Code

• Contributing Documentation

• Requirements

• Dev Environment

• Change PDF Theme

Introduction

What is GeyserLink¶

GeyserLink aims to provide an easy method of sending messages between any server involved

in a Minecraft connection and to do so in such a way as to allow both a trusted setup and an

untrusted setup. This could also potentially be a useful way for client side mods to implement

better communication. It is the TCP/IP of PluginMessages.

An example configuration could be a Geyser proxy connected to a Bungeecord proxy connecting

to a Spigot server. If all three servers are under the control of the same user then they can be

configured to trust each other. If the Geyser proxy is instead run by another user (for example

someone connecting to a server using their own Proxy) then it will be untrusted but still be able

to participate in communication where no trust is needed.

One example is that a trusted proxy could be queried about a players real IP whereas an

untrusted one cannot be trusted to provide this and thus a plugin relying on this behaviour can

gracefully fallback to using the proxy IP.

The following configurations should be supported:

Owner who has multiple proxies connecting to them for load balancing reasons. These are

trusted.

Owner who doesn't run their own proxy but still wants to provide support for users to run

their own. These are untrusted.

Mix of the above.

A Client Side mod connected to any of the above. In this case the client side mod would

be untrusted but the servers could be trusted.

Presently GeyserLink can be used as a plugin for the following servers:

GeyserMC

Spigot

Bungeecord

Note

GeyserLink is only of use to developers or plugins that rely on GeyserLink to be available. It does not itself provide

any additional feature.

•

•

•

•

•

•

•

4 Introduction

Copyright (C) 2020 GeyserLink Developers

Features¶

Provide a secure messaging system utilizing the built-in minecraft plugin messages. All

messages are signed with a private key and all messages can be verified by other

participants as being valid.

Automatically discovers participant keys and will record them.

Easily convert an untrusted member into trusted by copying its public key in

dynamic.yml config file.

Messages are linked to their responses using a unique sequence ID.

Provides a lambda style callback function so that message responses can be provided

close in code to where messages are generated.

Supports multiple responses as some messages may require more than one participant to

respond

Easily create custom messages

Last update:

•

•

•

•

•

•

•

Example

Send a ping message out and write out to the log any responses received.

// Will get a response from every participant
GeyserLink.getInstance().sendMessage(player, new PingMessage("Hello world!"))
 .onResponse(PingResponse.class, (result, signed, response) -> {
 getLogger().info("Got a ping response: " + response);
 });

Example

Send a custom message and retrieve a custom complex response.

// Will get a response from every participant
GeyserLink.getInstance().sendMessage(player, new GetPlayerProfileMessage("bundie"))
 .onResponse(GetPlayerProfileResponse.class, (result, signed, response) -> {
 // Only accept trusted responses
 if (signed.isTrusted()) {
 getLogger().info(String.format("name:%s, location:%s world:%s",
 response.getName(), response.getLocation().toString(), response
 }
 });

5 Introduction

Copyright (C) 2020 GeyserLink Developers

QuickStart

Maven Dependency¶

Add the following to your pom.xml:

Download the Plugin¶

Download and place the GeyserLink plugin into the plugins folder of each of your servers that

need it.

When the server is started it will generate a config.yml and a dynamic.yml file that will

contain keys for this server.

<repositories>
 <!-- Bundabrg's Repo -->
 <repository>
 <id>bundabrg-repo</id>
 <url>https://repo.worldguard.com.au/repository/maven-public</url>
 <releases>
 <enabled>true</enabled>
 </releases>
 <snapshots>
 <enabled>true</enabled>
 </snapshots>
 </repository>
</repositories>

<dependencies>
 <dependency>
 <groupId>au.com.grieve.geyserlink</groupId>
 <artifactId>GeyserLink</artifactId>
 <version>1.1.0-SNAPSHOT</version>
 <scope>provided</scope>
 </dependency>
</dependencies>

Note

6 QuickStart

Copyright (C) 2020 GeyserLink Developers

Sending a PingMessage¶

GeyserLink supports some build in messages that it will respond to itself. One of them is a

PingMessage which simply responds with whatever data was in the PingMessage payload. This

is a useful way of finding out what other GeyserLink services are available.

This is not terribly useful as we want to capture the response. The sendMessage method allows

you to chain a onResponse call that allows you to define a lambda to run when a response to

the messages is received. Note that you can get multiple responses for some messages.

Lets capture the response and print out the packet. Note that we specify what the response

class is as well which in this case is a PingResponse.

Last update:

GeyserMC (https://geysermc.org), a bedrock to java proxy, does not yet support plugins so you will need to either

wait till this pull request (https://github.com/GeyserMC/Geyser/pull/742) is merged or build your own version from that

branch.

Example

GeyserLink.getInstance().sendMessage(player, new PingMessage("Hello world!"));

Example

GeyserLink.getInstance().sendMessage(player, new PingMessage("Hello world!"))
 .onResponse(PingResponse.class, (result, signed, response) -> {
 // We have recieved a response to our ping. Print it out
 getLogger().info("Got a PingResponse: " + response);
 });

7 QuickStart

Copyright (C) 2020 GeyserLink Developers

https://geysermc.org
https://geysermc.org
https://github.com/GeyserMC/Geyser/pull/742
https://github.com/GeyserMC/Geyser/pull/742

How it works

Minecraft Plugin Messages¶

GeyserLink makes use of the normal PluginMessage channel provided through a special packet

in Minecraft. As a result it will not cause any issues if a server does not have GeyserLink. The

plugin writer does not have to deal with Plugin Messages as they will make use of events and

methods provided by GeyserLink.

GeyserLink takes a message provided by the program and will wrap it inside a signed

message (or a signed response). This signed message will contain identifiers for the

sequence, the sender, the packet payload and a signature for the packet. Responses are

similarly wrapped and are associated to Messages by the sequence number and Sender.

The reason for the signature is that we cannot trust messages that could come from a client.

This means that every message sent and received by GeyserLink has a signature affirming that

the data is correct and who has sent it. GeyserLink can also be configured as to which keys that

sign a signature can be trusted.

The only difference between an untrusted and trusted message is that the key used to sign a

trusted message has been placed in the trusted field in dynamic.yml rather than a 'known'

field. Untrusted messages can still be useful and unless there are any security implications then

plugin writers should consider trying to support messages from untrusted sources or gracefully

dealing with them.

Creating a Raw Message¶

Before we create custom messages it is worth knowing how to create a raw message and

response as it describes how GeyserLink works.

Here is an example:

Info

Geyserlink will send signed messages using the plugin channel geyserlink:message and responses using the

plugin channel geyserlink:response. There is no need to trap these as GeyserLink provides its own events,

GeyserLinkMessageEvent and GeyserLinkResponseEvent that will unwrap the message properly.

8 How it works

Copyright (C) 2020 GeyserLink Developers

This will send a GeyserLink message with a channel myChannel and a sub channel of

mySubChannel. These are similar sounding to the Plugin Message channel but are not related

and are used to allow you to trap what GeyserLink messages are interesting.

GeyserLink will trigger the event GeyserLinkMessageEvent when a GeyserLink message is

received. The following is an example of how to trap the above message in Spigot:

Creating a Raw Response¶

Lets expand on the previous example and return something back. The Event will now look like

this:

Example

GeyserLink.getInstance().sendMessage(player, "myChannel", "mySubChannel", "test".getBytes

Example

@EventHandler
public void onGeyserLinkMessage(GeyserLinkMessageEvent event) {
 GeyserLinkMessage message = event.getSignedMessage().getMessage();

 if (message.getChannel().equals("myChannel") && message.getSubChannel().equals
 getLogger().info("Got a GeyserLink message with payload: " + new String(message
 }
}

Alert

The channel and subchannel here are not related to the Plugin Message channel. These are wrapped inside

the message and are available for your use and it is recommended to namespace the name like the regular

PluginChannel channel does to avoid collisions. GeyserLink reserves geyserlink:main as a channel for its own

use.

Example

9 How it works

Copyright (C) 2020 GeyserLink Developers

Note that to respond we had to pass the message as a parameter. This allows GeyserLink to

properly link the response to the message.

Let's update how it is executed now:

Now it will output the response it receives. Note that the lambda here is passed the signed

message.

Private and Public Keys¶

When first run GeyserLink will generate a new public and private key for itself, storing these in

the configuration file dynamic.yml. The private key should be considered confidential.

When sending signed messages GeyserLink will use its private key to sign the message. The

receiving server will use the public key to verify if a signature is valid and if it is a trusted public

key.

If GeyserLink receives a message by a sender it does not have the public key for it will send out

a WHOIS packet asking the sender for their public key and will then add it to its known key list

and persist this into the dynamic.yml configuration file.

Any key can be made trusted by editing the dynamic.yml file and moving the key into the

trusted list.

@EventHandler
public void onGeyserLinkMessage(GeyserLinkMessageEvent event) {
 GeyserLinkMessage message = event.getSignedMessage().getMessage();

 if (message.getChannel().equals("myChannel") && message.getSubChannel().equals
 getLogger().info("Got a GeyserLink message with payload: " + new String(message

 GeyserLink.getInstance().sendResponse(event.getPlayer(), message, "responded"
 }
}

Example

GeyserLink.getInstance().sendMessage(player, "myChannel", "mySubChannel", "test".getBytes
 .onResponse(() -> (result, signed) -> {
 getLogger().info("Got a GeyserLink response: " + new String(signed.getMessage
 });

Note

GeyserLink will trigger a GeyserLinkResponseEvent for any response but it is less useful as responses can more

easily be used through the onResponse method as demonstrated here.

10 How it works

Copyright (C) 2020 GeyserLink Developers

Last update:

11 How it works

Copyright (C) 2020 GeyserLink Developers

Custom Messages

Whilst we can send raw messages using GeyserLink it is easier to define a Message and

Response class that will serialize and unserialize the responses.

Custom Message and Response¶

Let's create a PlayerQueryMessage and PlayerQueryResponse that returns the number of

players on the server. It is up to you as to which server will respond to this but for this example

we will assume the GeyserLink plugin is on a Spigot server and on a Geyser proxy and that

either side may send the message to get a response from the other side.

PlayerQueryMessage¶

Here we define the channel and subchannel that this message will use. The rest is mainly

boilerplate dealing with serializing or deserializing the object.

Example

@Getter
@ToString
public class PlayerQueryMessage extends WrappedMessage {
 private final String channel = "myPlugin:command";
 private final String subChannel = "player-query";

 public PlayerQueryMessage(String data) {
 super();
 }

 public PlayerQueryMessage(JsonNode node) {
 super(node);
 }

 @Override
 protected ObjectNode serialize() {
 return super.serialize();
 }
}

Info

Messages make use of JSON to contain their structure in a packet. This means that when serializing an object it will

call the serialize method that will add to an ObjectNode any data relevant for the object.

To deserialize a constructor taking a JsonNode is used which then pulls from that any relevant fields for the object.

12 Custom Messages

Copyright (C) 2020 GeyserLink Developers

PlayerQueryResponse¶

This one is a bit more interesting as it has a data field count. We have to deal with how to

deserialize from a JsonNode and how to serialize to an ObjectNode.

Putting it together¶

Now you can send a PlayerQueryMessage by doing something like this:

Example

@Getter
@ToString
public class PlayerQueryResponse extends WrappedResponse {
 private int count;

 public PlayerQueryResponse(int count) {
 super();

 this.count = count;
 }

 public PlayerQueryResponse(JsonNode node) {
 super(node);
 this.count = node.get("count").asInt();
 }

 @Override
 protected ObjectNode serialize() {
 return super.serialize()
 .put("count", count);
 }
}

Note

The Response does not need to define a channel or subchannel.

Example

GeyserLink.getInstance().sendMessage(player, new PlayerQueryMessage())
 .onResponse(PlayerQueryResponse.class, (result, signed, response) -> {
 getLogger(String.format("The server has %d players on it", response.getCount
 });

Note

13 Custom Messages

Copyright (C) 2020 GeyserLink Developers

Message Event¶

Whichever server is responding to the message will need to register an event listener for the

message. The following is a simple example for a Spigot server.

For completion sake the following is for the GeyserMC server, note how similar it is.

When sending a raw message you only have the fields result and signed. When using a wrapped message you

also get a field for the message itself. In the above case response will be a PlayerQueryResponse object and

will be deserialized from the signed object but we still get the signed object as it has data on it that could be

useful.

Example

@EventHandler
public void onGeyserLinkMessage(GeyserLinkMessageEvent event) {
 if (!event.getSignedMessage().getMessage().getChannel().equals("myPlugin:command"
 return;
 }

 switch(event.getSignedMessage().getMessage().getSubChannel()) {
 case "player-query":
 GeyserLink.getInstance().sendResponse(event.getPlayer(), event.getSignedMessage

new PlayerQueryResponse(plugin.getServer().getOnlinePlayers().size
 break;
 }
}

Example

@Event
public void onGeyserLinkMessage(GeyserLinkMessageEvent event) {
 if (!event.getSignedMessage().getMessage().getChannel().equals("myPlugin:command"
 return;
 }

 switch(event.getSignedMessage().getMessage().getSubChannel()) {
 case "player-query":
 GeyserLink.getInstance().sendResponse(event.getSession(), event.getSignedMessage
 new PlayerQueryResponse(plugin.getConnector().getPlayers().values
 break;
 }
}

14 Custom Messages

Copyright (C) 2020 GeyserLink Developers

Security¶

You may have noticed an issue with the previous example. Anyone could connect to a server

and either spoof GeyserLink messages or run their own GeyserLink plugin on a proxy and thus

the player count must come from a trusted partner. We also don't want a random person being

able to query the player count.

To solve this we need to check on both sides. On the client side the following would only accept

trusted responses:

The server could be updated as follows:

Last update:

Note

If possible try support untrusted clients as well. If the player count in this example is not confidential then there may

be no reason not to still allow queries. Also if the message is coming from a client side mod then it will be untrusted

by default.

Example

GeyserLink.getInstance().sendMessage(player, new PlayerQueryMessage())
 .onResponse(PlayerQueryResponse.class, (result, signed, response) -> {
 if (signed.isTrusted()) {
 getLogger(String.format("The server has %d players on it", response.getCount
 }
 });

Example

@EventHandler
public void onGeyserLinkMessage(GeyserLinkMessageEvent event) {
 if (!event.getSignedMessage().getMessage().getChannel().equals("myPlugin:command"
 return;
 }

 switch(event.getSignedMessage().getMessage().getSubChannel()) {
 case "player-query":
 if (event.getSignedMessage().isTrusted()) {
 GeyserLink.getInstance().sendResponse(event.getPlayer(), event.getSignedMessage
 new PlayerQueryResponse(plugin.getServer().getOnlinePlayers
 }
 break;
 }
}

15 Custom Messages

Copyright (C) 2020 GeyserLink Developers

Contributing¶

Here are some ways that you can help contribute to this project.

New ideas or Bug Reports¶

Need something? Found a bug? Or just have a brilliant idea? Head to the Issues (https://

github.com/Bundabrg/GeyserLink/issues) and create new one.

Contributing Code¶

If you know Java then take a look at open issues and create a pull request.

Do the following to build the code:

Contributing Documentation¶

If you can help improve the documentation it would be highly appreciated. Have a look under the

docs folder for the existing documentation.

The documentation is built using mkdocs. You can set up a hot-build dev environment that will

auto-refresh changes as they are made.

Requirements¶

python3

pip3

npm (only if changing themes)

Install dependencies by running:

git clone https://github.com/Bundabrg/GeyserLink
cd GeyserLink
mvn clean package

•

•

•

pip3 install -r requirements.txt

16 Contributing¶

Copyright (C) 2020 GeyserLink Developers

https://github.com/Bundabrg/GeyserLink/issues
https://github.com/Bundabrg/GeyserLink/issues
https://github.com/Bundabrg/GeyserLink/issues
https://github.com/Bundabrg/GeyserLink/issues

Dev Environment¶

To start a http document server on http://127.0.0.1:8000 execute:

Change PDF Theme¶

Edit the PDF theme under docs/theme/pdf. Rebuild by doing the following:

This will update pdf.css under docs/css/pdf.css. Rebuilding the docs will now use the

new theme.

Last update:

mkdocs serve

cd docs/theme/pdf
npm install
npm run build-compressed

17 Contributing¶

Copyright (C) 2020 GeyserLink Developers

	GeyserLink
	Table of contents
	Introduction
	QuickStart
	How it works
	Custom Messages
	Contributing

	Introduction
	What is GeyserLink¶
	Features¶

	QuickStart
	Maven Dependency¶
	Download the Plugin¶
	Sending a PingMessage¶

	How it works
	Minecraft Plugin Messages¶
	Creating a Raw Message¶
	Creating a Raw Response¶
	Private and Public Keys¶

	Custom Messages
	Custom Message and Response¶
	PlayerQueryMessage¶
	PlayerQueryResponse¶
	Putting it together¶

	Message Event¶
	Security¶

	Contributing¶
	New ideas or Bug Reports¶
	Contributing Code¶
	Contributing Documentation¶
	Requirements¶
	Dev Environment¶
	Change PDF Theme¶

